Quantitative Trait Loci and Candidate Gene Identification for Chlorophyll Content in RIL Rice Population under Drought Conditions

  • Yheni Dwiningsih Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America https://orcid.org/0000-0001-9800-1009
  • Anuj Kumar Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
  • Julie Thomas Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
  • Charlez Ruiz Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
  • Jawaher Alkahtani Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
  • Niranjan Baisakh Department of School of Plant, Environmental and Soil Sciences, Louisiana State University, Louisiana, United States of America
  • Andy Pereira Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
Keywords: rice, chlorophyll, drought, candidate genes

Abstract

Rice (Oryza sativa) is the staple food for more than half of the world population. Rice needs 2-3 times more water compared to other crops. Drought condition is one of the limited factor in rice production. Recombinant inbred line population derived from a cross between rice genotype tropical japonica Kaybonnet and indica ZHE733 named K/Z RIL population was used to identify candidate genes for chlorophyll content related to grain yield under drought condition. Chlorophyll content in the flag leaf of the rice plant is related to the grain yield since chlorophyll plays an important role in the photosynthesis. The K/Z RIL population was screened in the field at Fayetteville, Arkansas, USA by controlled drought stress treatment at the reproductive stage (R3), and the effect of drought stress was quantify by measuring chlorophyll content, flag leaf characteristics, and grain yield. Quantitative trait loci (QTL) analysis was performed with a set of 4133 single nucleotide polymorphism (SNP) markers by using QTL IciMapping software version 4.2.53. Candidate genes within the QTL regions were identified by using the MSU Rice Genome Annotation Project database release 7.0 as the reference. A total of eleven QTLs and forty-three candidate genes were identified for chlorophyll content related to the grain yield under drought condition. Most of the candidate genes involve in biological processes, molecular functions, and cell components. By understanding the genetic complexity of the chlorophyll content, this research provides information to develop drought-resistant rice varieties with greater productivity under drought stress condition.

Downloads

Download data is not yet available.

References

1. Karki, S., Rizal, G., Quick, W.P., Improvement of photosynthesis in rice (Oryza sativa L.) by inserting the C4 pathway, Rice, 2013, 6, 28, doi: 10.1186/1939-8433-6-28.
2. Riveros, F., Keynote address of the 18th session of IRC, in: Nanda, J.S. (Eds.), Rice Breeding and Genetics, Research Priorities and Challenges, Enfield Science Publishers, 2000.
3. Bernier, J., Kumar, A., Venuprasad R., Spaner, D., Gary A., A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice, Crop Science, 2007, 47, 507-518.
4. Hossain, M., Rice facts: a balancing act, Rice Today, 2007, 6, 37.
5. Qing, Z.M., Jing, L.G., Kai, C.R., Photosynthesis characteristics in eleven cultivars of sugarcane and their responses to water stress during the elongation stage, Proceedings of International Society of Sugarcane Technologist, 2001, 24, 642-643.
6. Farooq, M., Basra, S.M.A., Wahid, A., Cheema, Z.A., Cheema, M.A., Khaliq, A., Physiological role of exogenously applied glycine betaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.), J. Agron. Crop Sci., 2008, 194, 325-333.
7. Razmjoo, K., Heydarizadeh, P., Sabzalian, M.R., Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomile, Int. J. Agric. Biol., 2008, 10, 451-454.
8. Jiang, G., Zeng, J., He, Y., Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations, Gene, 2014, 536, 287-295.
9. Jiang, S., Zhang, X., Zhang, F., Xu, Z., Chen, W., Li, Y., Identification and fine mapping of qCTH4, a quantitative trait loci controlling the chlorophyll content from tillering to heading in rice (Oryza sativa L.), Journal of Heredity, 2012, 103, 5, 720-726, doi:10.1093/jhered/ess041.
10. Takai, T., Kondo, M., Yano, M., A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice, Rice, 2010, 3, 172-180, doi:10.1007/s12284-010-9047-6.
11. Wang, B., Lan, T., Wu, W.R., Li, W.M., Mapping of QTLs controlling chlorophyll content in rice, Acta Genetica Sinica, 2003, 30, 12, 1127-1132.
12. Wang, Q., Xie, W., Xing, H., Yan, J., Meng, X., Li, X., Fu, X., Xu, J., Lian, X., Yu, S., Xing, Y., Wang G., Genetic Architecture of natural variation in rice chlorophyll content revealed by a genome-wide association study. Mol. Plant., 2015, 8, 946–957.
13. Xu, Y.F., Ookawa, T., Ishihara, K., Analysis of the photosynthetic characteristics of the high-yielding rice cultivar Takanari, Jpn J Crop Sci., 1997, 66, 616-623.
14. Thomas, J.A., Jeffrey, A.C., Atsuko, K., David, M.K., Regulating the proton budget of higher plant photosynthesis, Proc Natl Acad Sci USA, 2005, 102, 9709-9713.
15. Masuda, T., Fujita, Y., Regulation and evolution of chlorophyll metabolism, Photochem. Photobiol. Sci., 2008, 7, 1131-1149.
16. Peng, S., Khush, G., Virk, P., Tang, Q., Zou, Y., Progress in ideotype breeding to increase rice yield potential, Field Crop Res., 2008, 108, 32-38.
17. Zhu, X., Long, S., Ort, D.R., Improving photosynthetic efficiency for greater yield, Annu. Rev. Plant Biol., 2010, 61, 235-261.
18. Ort, D.R., Zhu, X., Melis, A., Optimizing antennae size to maximize photosynthetic efficiency, Plant Physiol., 2011, 155, 79-85.
19. Jung, K.H., Hur, J., Ryu, C.H., Choi, Y., Chung, Y.Y., Miyao, A., Hirochika, H., An, G., Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system, Plant Cell Physiol., 2003, 44, 463-472.
20. Zhang, H., Li, J., Yoo, J., Yoo, S., Cho, S., Koh, H., Seo, H.S., Paek, N., Rice Chlorina-1 and Chlorina-9 encode ChlD and CHll subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development., Plant Mol. Biol., 2006, 62, 325-327.
21. Jiang, H., Li, M., Liang, N., Yan, H., Wei, Y., Xu, X., Liu, J., Xu, Z., Chen, F., Wu, G., Molecular cloning and function analysis of the stay green gene in rice, Plant J., 2007, 52, 197-209.
22. Kusaba, M., Ito, H., Morita, R., Iida, S., Sato, Y., Fujimoto, M., Kawasaki, S., Tanaka, R., Hirochika, H., Nishimura, M., Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence, Plant Cell, 2007, 19, 1362-1375.
23. Sato, Y., Morita, R., Katsuma, S., Nishimura, M., Tanaka, A., Kusaba, M., Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice, Plant J., 2009, 57, 120-131.
24. Wu, Z., Zhang, X., He, B., Diao, L., Sheng, S., Wang, J., Guo, X., Su, N., Wang, L., Jiang, L., A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis, Plant Physiol., 2007, 145, 29-40.
25. Yamatani, H., Sato, Y., Masuda, Y., Kato, Y., Morita, R., Fukunaga, K., Nagamura, Y., Nishimura, M., Sakamoto, W., Tanaka, A., NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll-protein complexes during leaf senescence, Plant J., 2013, 74, 652-662.
26. Tan, C., Weng, X., Yan, W., Bai, X., Xing, Y., Ghd7, a pleiotropic gene controlling flag leaf area in rice, Yi Chuan, 2012, 34, 901-906.
27. Zhang, G., Li, S., Wang, L., Ye, W.J., Zeng, D.L., Rao, Y.C., Peng, Y.L., Hu, J., Yang, Y.L., Xu, J., LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11, Mol. Plant, 2014, 7, 1350-1364.
28. Takai, T., Adachi, S., Taguchi-Shiobara, F., Sanoh-Arai, Y., Iwasawa, N., Yoshinaga, S., Hirose, S., Taniguchi, Y., Yamanouschi, U., Wu, J., A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate, Sci. Rep. 2013, 3, 2149.
29. Fujita, D., Trijatmiko, K.R., Tagle, A.G., Sapasap, M.V., Koide, Y., Sasaki, K., Tsakirpaloglou, N., Gannaban, R.B., Nishimura, T. Yanagihara, S., NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc. Natl. Acad. Sci. USA, 2013, 110, 20431-20436.
30. Chen, M.L., Luo, J., Shao, G.N., Wei, X.J., Tang, S.Q., Sheng, Z.H., Song, J., Hu, P.S. Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1, Plant Cell Rep., 2012, 31, 863-872.
31. Dong, Y.J., Quantitative trait loci for leaf chlorophyll content at two developmental stages of rice (Oryza sativa L.), Commun. Biometry Crop Sci., 2007, 2, 1-7.
32. Zuo, H.L., Molecular detection of quantitative trait loci for leaf chlorophyll content at different growth-stages of rice (Oryza sativa L.), Asian J. Plant Sci., 2007, 6, 518-522.
33. Abdelkhalik, A.F., Shishido, R., Nomura, K., Ikehashi, H. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.), Theor Appl Genet., 2005, 110, 7, 1226-1235.
34. Teng, S., Qian, Q., Zeng, D.L., Kunihiro, Y., Fujimoto, K., Huang, D.N., Zhu, L.H., QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.), Euphtyca, 2004, 135, 1-7.
35. Ishimaru, K., Yano, M., Aoki, N., Ono, K., Hirose, T., Lin, S.Y., Monna, L., Sasaki, T., Ohsugi, R., Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags, Theor Appl Genet., 2001, 102, 793-800.
36. Rutger, J.N., Tai, T.H., Registration of K/Z mapping population of rice, Crop Sci., 2005, 45, 2671-2672.
37. IRRI, SES (Standard Evaluation System for rice), International Network for Genetic Evaluation of Rice, Genetic Resource Center, Los Baños, Philippines, 2013.
38. Meng, L., Li, H., Zhang, L., Wang, J., QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations, The Crop Journal, 2015, 3, 269-283.
39. Kosambi, D. D., The estimation of map distances from recombination values, Ann Eugenics, 1943, 2, 172-175, doi:10.1111/j.1469-1809.1943.tb02321.x.
40. Solis, J., Gutierrez, A., Mangu, V., Sanchez, E., Bedre, R., Linscombe, S., Baisakh, N., Genetic mapping of quantitative trait loci for grain yield under drought in rice under controlled greenhouse conditions, Front. Chem., 2018, 5, 129, doi:10.3389/fchem.2017.00129.
41. McCouch, S.R., Gene nomenclature system for rice, Rice, 2008, 1, 72-84, doi:10.1007/s12284-008-9004-9.
42. Jebbouj, R., Yousfi, B.E., Barley yield losses due to defoliation of upper three leaves either healthy or infected at boot stage by Pyrenophora teres f. teres, Eur J. Plant Pathol., 2009, 125, 2, 303-315.
43. Li, Z.K., Pinson, S.R.M., Stansel, J.W., Paterson, A.H., Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Mol Breed., 1998, 4, 5, 415-426.
44. Ghosh, S., Sahai, V.N., Saran, S., Role of flag leaf on grain yield and spikelet sterility in rice cultivar, Oryza, 1990, 27, 87-89.
45. Monyo, J.H., Whittington, W.J., Genotypic difference in flag leaf area and their contribution to grain yield in wheat, Euphytica, 1973, 22, 3, 600-606.
46. Gladun, I.V., Karpov, E. A., Distribution of assimilates from the flag leaf of rice during the reproductive period of development. Russ J Plant Physiol., 1993, 40, 215-219.
47. Tomoshiro, T., Mitsunori, O., Waichi, A., Comparison of the formation of dry substance by the old and new type of rice cultivars. Japan J Crop Sci., 1983, 52, 299-305.
48. Zhen, B., Guo, X., Zhou, X., Lu, H., Wang, Z., Effect of the alternating stresses of drought and waterlogging on the growth, chlorophyll content, and yield of rice (Oryza sativa L.)., J. Irrig. Drain Eng., 2019, 145, 5.
49. Biswal, A.K., Kohli, A., Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Mol Breeding, 2013, 31, 4, 749-766.
50. Yue, B., Xue, W., Luo, L., Xing, Y., QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice, Acta Genetica Sinica, 2006, 33, 824-832.
51. Jiang, G., He, Y., Xu, C., Li, X., Zhang, Q., The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross, Theor. Appl. Genet., 2004, 108, 688-698.
52. Uddling, J., Gelang-Alfredsson, J., Piikki, K., Pleijel, H., Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings, Photosynth Res., 2007, 91, 37-46, doi:10.1007/s11120-006-9077-5.
53. Maisura, C.M.A., Lubis, I., Junaedinand, A., Ehara, H., Some physiological character responses of rice under drought conditions in a paddy system, J Int Soc Southeast Asian Agric Sci., 2014, 20, 1, 104-114.
54. Ha, P.T.T. Physiological responses of rice seedlings under drought stress, J Sci Devel., 2014, 12, 5, 635-640.
55. Sikuku, P.A., Onyango, J.C., Netondo, G.W., Physiological and biochemical responses of five NERICA rice varieties (Oryza sativa L.) to water deficit at vegetative and reproductive stage, Agric Biol J North Am., 2012, 3, 3, 93-104.
56. Cha-um, S., Yooyongwech, S., Supaibulwatana, K., Water deficit stress in the reproductive stage of four indica rice (Oryza sativa L.) genotypes, Pak J Bot., 2010, 42, 5, 3387-3398.
57. Pirdashti, H., Sarvestani, Z.T., Bahmanyar, M.A., Comparison of physiological responses among four contrast rice cultivars under drought stress conditions, Proc World Acad Sci Engin Technol., 2009, 49, 52-53.
58. Ranjbarfordoei, A., Samson, R., Damne, P. V., Lemeur, R., Effects of drought stress induced by polyethylene glycol on pigment content and photosynthetic gas exchange of Pistacia khinjuk and P. mutica, Photosynthetica, 2000, 38, 3, 443-447.
59. Sairam, R.K., Shukla, D.S., Deshmukh, P.S., Effect of Homo brassinolide seed treatment on germination, β-amylase activity and yield of wheat under moisture stress conditions, Indian Journal of Plant Physiology, 1996, 1, 141-144.
60. Mirnoff, N., The role of active oxygen in the response of plants to water deficit and desiccation, New Phytol., 1993, 125, 27-58.
61. Foyer, C.H., Descourvieres, P., Kunert, K.J., Photo oxidative stress in plants, Plant Physiol., 1994, 92, 696-717.
62. Hirt, H., Shinozaki, K., Plant responses to abiotic stress, Springer, Berlin, 2004.
63. Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H.J., Somasundaram, R., Panneerselvam, R., Drought stress in plants: A review on morphological characteristics and pigments composition, Int J Agric Biol., 2009, 11, 100-105.
64. Yuan, L.P., Hybrid rice breeding for super high yield, Hybrid Rice, 1997, 12, 6, 1-6.
65. Dwiningsih, Y., Molecular genetic analysis of drought resistance and productivity traits of rice genotypes, University of Arkansas, Fayetteville, United States of America, 2020.
66. Vangahun, J.M., Inheritance of flag leaf angle in two rice (Oryza sativa L.) cultivars, A thesis submitted to the school of graduate studies, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2012.
67. Dingkuhn, M., Laza, M.R.C., Kumar, U., Mendez, K.S., Collard, B., Jagadish, K.S.V., Improving yield potential of tropical rice: achieved levels and perspectives through improve dideo types, Field Crops Res., 2015, 182, 43-59, doi:10.1016/j.fcr.2015.05.025.
68. Zhang, B., Ye, W., Ren, D., Tian, P., Peng, Y., Gao, Y., Ruan, B., Wang, L., Zhang, G., Guo, L., Qian, Q., Gao, Z., Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice, Rice, 2015, 8, 2, doi:10.1186/s12284-014-0039-9s.
69. He, P., Wang, X., Zhang, X., Jiang, Y., Tian, W., Zhang, X., Li, Y., Sun, Y., Xie, J., Ni, J., He, G., Sang, X. Short and narrow flag leaf1, a GATA zinc finger domain-containing protein, regulates flag leaf size in rice (Oryza sativa), BMC Plant Biology, 2018, 18, 273, doi:10.1186/s12870-018-1452-9.
70. Cho, S.H., Yoo, S.C., Zhang, H.T., Pandeya, D., Koh, H.J., Hwang, J.Y., The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development, New Phytol., 2013, 198, 4, 1071-1084.
71. Kadioglu, A., Terz, R., A dehydration avoidance mechanism: Leaf rolling, Bot Rev., 2007, 73, 4, 290-302.
72. Hsiao, T.C., O'Toole, J.C., Yambao, E.B., Turner, N.C., Influence of osmotic adjustment on leaf rolling and tissue death in rice, Plant Physiol., 1984, 75, 328.
73. Pandey, V., Shukla, A., Acclimation and Tolerance Strategies of Rice under Drought Stress, Rice Science, 2015, 22, 4, 147-161.
74. Subashri, M., Robin, S., Vinod, K.K., Rajeswari, S., Mohanasundaram, K., Raveendran, T.S., Trait identification and QTL validation for reproductive stage drought resistance in rice using selective genotyping of near flowering RILs, Euphytica, 2009, 166, 2, 291-305.
75. Salunkhe, A.S., Poornima, R., Prince, K.S., Kanagaraj, P., Sheeba, J.A., Amudha, K., Suji, K.K., Senthil, A., Babu, R.C., Fine mapping QTL for drought resistant traits in rice (Oryza sativa L.) using bulk segregant analysis, Mol Biotechnol., 2011, 49, 1, 90-95.
76. Liu, G., Mei, H., Zou, G., Luo, L., Sensitivities of rice grain yield and other panicle characters to late-stage drought stress revealed by phenotypic correlation, Molecular Breeding, 2010, 25, 603-613.
77. Farooq, H., Basra, S.M.A., Wahid, H., Rehman, H., Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.), J Agron Crop Sci., 2009, 195, 4, 254-261.
78. Shahryari, R., Gurbanov, E., Gadimov, A., Hassanpanah, D., Tolerance of 42 bread wheat genotypes to drought stress after anthesis, Pak J Biol Sci., 2008, 11, 10, 1330-1335.
79. Kamoshita, A., Rofriguez, R., Yamauchi, A., Wade, L.J., Genotypic variation in response of rainfed lowland to prolonged drought and re-watering, Plant Prod Sci., 2004, 7, 4, 406-420.
80. Botwright, A.T.L., Latte, H.R., Wade, L.J., Genotype and environment interactions for grain yield of upland rice backcross lines in diverse hydrological environments, Field Crops Res., 2008, 108, 2, 117-125.
81. Benbella, M., Paulsen, G.M., Efficacy of treatments for delaying senescence of wheat leaves: I Senescence under controlled condition, Agron. J., 1998, 90, 329-332.
82. Borrell, A.K., Hammer, G.L., Henzell, R.G., Does maintaining green leaf area in sorghum improve yield under drought?, Crop Sci., 2000, 40, 1037-1048.
83. Haussmann, B.I.G., Mahalakshmi, V., Reddy, B.V.S., Seetharama, N., Hash, C.T., Geiger, H.H., QTL mapping of stay-green in two sorghum recombinant inbred populations, Theor Appl Genet., 2002, 106, 133-142.
84. Verma, V., Foullces, M.J., Worland, A.J., Sylvester-Bradley, R., Caligari, P.D.S., Snape, J.W., Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments, Euphytica, 2004, 135, 255-263.
85. Strand, A., Asami, T., Alonso, J., Ecker, J.R., Chory, J., Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX, Nature, 2003, 421, 79-83.
86. Larkin, R.M., Alonso, J.M., Ecker, J.R., Chory, J., GUN4, a regulator of chlorophyll synthesis and intracellular signaling, Science, 2003, 299, 902-906.
87. Surpin, M., Larkin, R., Chory, J., Signal transduction between the chloroplast and the nucleus, Plant Cell, 2002, 14, 327-338.
88. Chen, W., Sheng, Z., Cai, Y., Li, Q., Wei, X., Xie, L., Jiao, G., Shao, G., Tang, S., Wang, J., Hu, P., Rice morphogenesis and chlorophyll accumulation is regulated by the protein encoded by NRL3 and its interaction with NAL9, Front. Plant Sci., 2019, 10, 175, doi:10.3389/fpls.2019.00175.
89. Zhao, Y., Qiang, C., Wang, X., Chen, Y., Deng, J., Jiang, C., Sun, X., Chen, H., Li, J., Piao, W., Zhu, X., Zhang, Z., Zhang, H., Li, Z., Li, J., New alleles for chlorophyll content and stay-green traits revealed by a genome wide association study in rice (Oryza sativa), Sci Rep., 2019, 9, 2541. doi:10.1038/s41598-019-39280-5.
90. Jung, K.H., Lee, J., Dardick, C., Seo, Y.S., Cao, P., Canlas, P., Phetsom, J., Xu, X., Ouyang, S., An, K., Identification and functional analysis of light-responsive unique genes and gene family members in rice, PLoS Genet., 2008, 4, 164.
91. Jiang, S., Zhang, X., Xu, Z., Chen, W., Comparison between QTLs for chlorophyll content and genes controlling chlorophyll biosynthesis and degradation in japonica rice, Acta Agron. Sin., 2010, 36, 376-384.
Published
2021-08-31
How to Cite
Dwiningsih, Y., Kumar, A., Thomas, J., Ruiz, C., Alkahtani, J., Baisakh, N., & Pereira, A. (2021). Quantitative Trait Loci and Candidate Gene Identification for Chlorophyll Content in RIL Rice Population under Drought Conditions. Indonesian Journal of Natural Pigments, 3(2), 54. https://doi.org/10.33479/ijnp.2021.03.2.54
Section
Full Paper