A Fluorescence Study on the Extracts of Red Dragon Fruit Peel in Various Solvents

  • Krisfian Tata Aneka Priyangga Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, East Java, Indonesia https://orcid.org/0000-0002-4119-2470
  • Yehezkiel Steven Kurniawan Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, East Java, Indonesia https://orcid.org/0000-0002-4547-239X
  • Edi Setiyono Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, East Java, Indonesia https://orcid.org/0000-0002-6077-7693
  • Muhammad Riza Ghulam Fahmi Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, East Java, Indonesia https://orcid.org/0000-0002-9148-878X
  • Hendrik Oktendy Lintang Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, East Java, Indonesia https://orcid.org/0000-0002-1911-8100
  • Leny Yuliati Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, East Java, Indonesia http://orcid.org/0000-0003-1600-5757
Keywords: ethanolic extract, fluorescence, maceration, red dragon fruit peel, solvent

Abstract

Special attention has been given to red dragon fruit (Hylocereus polyrhizus) because of its unique natural compounds exhibiting wide biological activities. However, the potential use of the red dragon fruit peel has been less addressed. In the present work, simple extraction of red dragon fruit peel was carried out to study the fluorescence properties of the corresponding extracts in various solvents. The red dragon fruit peel was first separated, dried, and macerated for 24 hours using distilled water, ethanol, and acetone, separately. The results demonstrated that the peel extracts exhibited different photoluminescence properties depending on the solvent type. It was revealed that the ethanolic extract gave the highest fluorescence intensity among the other extracts. The ethanolic extract showed two excitation peaks at 290 and 359 nm, yielding different emission properties. Excitation at 290 nm gave one emission peak at 339 nm, while the excitation at 359 nm gave an emission peak at 436 nm. Such strong photoluminescence properties observed in the wide range of UV and visible regions demonstrated the potential use of the red dragon fruit peel as a photonic material. Spectroscopy study also proposed that the ethanolic extract would have polyphenol and chlorogenic acid as the main compounds.

Downloads

Download data is not yet available.

References

[1] Hassan, M.A., and Nemr, A.E. Health and Environmental Impacts of Dyes: Mini Review. Am. J. Environ. Sci. Eng. 2017, 1, 64-67, doi: 10.11648.j.ajese.20170103.11.
[2] Pirkarami, A., and Olya, M.E. Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. J. Saudi Chem. Soc. 2017, 21, S179-S186, doi: 10.1016/j.jscs.2013.12.008.
[3] Liu, Y., and Zhu, L. Enhanced treatment of dispersed dye-production wastewater by self-assembled organobentonite in a one-step process with poly-aluminium chloride. Sci. Rep. 2017, 7, 6843, doi: 10.1038/s41598-017-07333-2.
[4] Liaotrakoon, W., de Clercq, N., van Hoed, V., van de Walle, D., Lewille, B., and Dewettinck, K. Impact of thermal treatment on physicochemical, antioxidative and rheological properties of white-flesh and red-flesh dragon fruit (Hylocereus sp.). Food Bioprocess. Technol. 2013, 6, 416-430, doi: 10.1007/s11947-013-1064-1.
[5] Wresdiyati, T., Sa'diah, S., Winarto, A., and Febriyani, V. Alpha-glucosidase inhibition and hypoglycemic activities of Sweitenia mahagoni seed extract. HAYATI J. Biosci. 2015, 22, 73-78, doi: 10.4308/hjb.22.2.73.
[6] Sapitri, E.W., Batubara, I., and Syafitri, U.D. Optimization extraction of Xylocarpus granatum stem as antioxidant and antiglycation. HAYATI J. Biosci. 2019, 26, 50-55, doi: 10.4308/hjb.26.2.%25x.
[7] Mercado-Silva, E.M. Pitaya-Hylocereus undatus (Haw). Exotic Fruits 2018, 339-349, doi: 10.1016/B978-0-12-803138-4.00045-9.
[8] Lee, K.H., Wu, T.Y., and Siow, L.F. Spray drying of red (Hylocereus polyrhizus) and white (Hylocereus undatus) dragon fruit juices: physicochemical and antioxidant properties of the powder. Int. J. Food Sci. Technol. 2013, 48, 2391-2399, doi: 10.1111/ijfs.12230.
[9] Stintzing, F.C., Schieber, A., and Carle, R. Betacyanins in fruits from red-purple pitaya, Hylocereus polyrhizus (Weber) Britton & Rose. Food Chem. 2002, 77, 101-106, doi: 10.1016/S0308-8146(01)00374-0.
[10] Jafaar, R.A., Rahman, A.R.A., Mahmod, N.Z.C., and Vasudevan, R. Proximate analysis of dragon fruit (Hylocereus polyrhizus). Am. J. Appl. Sci. 2009, 6, 1341-1346, doi: 10.3844/ajassp.2009.1341.1346.
[11] Rebecca, O.P.S., Boyce, A.N., and Chandran, S. Pigment identification and antioxidant properties of red dragon fruit (Hylocereus polyrhizus). African J. Biotechnol. 2010, 9, 1450-1454, doi: 10.5897/AJB09.1603.
[12] Kim, H., Choi, H.K., Moon, J.Y., Kim, Y.S., Mosaddik, A., and Cho, S.K. Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content. J. Food Sci. 2011, 76, C38-45, doi: 10.1111/j.1750-3841.2010.01908.x.
[13] Hanifa, N.I., Rumiyati, Sismindari, and Fakhrudin, N. Cytoprotective and antioxidant effects of ethanolic extract of red dragon fruit (Hylocereus polyrhizus) and carrot (Daucus carota L.). AIP Conf. Proc. 2016, 1755, 030004, doi: 10.1063/1.4958475.
[14] Wang, L., Shang, J., Hao, W., Jiang, S., Huang, S., Wang, T., Sun, Z., Du, Y., Dou, S., Xie, T., Wang, W., and Wang, J. A dye-sensitized visible light photocatalyst-Bi24O31Cl10. Sci. Rep. 2014, 4, 7384, doi: 10.1038/srep07384.
[15] Zhang, X., Peng, T., and Song, S. Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production, J. Mater. Chem. A 2016, 4, 2365-2402, doi: 10.1039/C5TA08939E.
[16] Freitag, M., Teuscher, J., Saygili, Y., Zhang, X., Giordano, F., Liska, P., Hua, J., Zakeeruddin, S.M., Moser, J.E., Gratzel, M., and Hagfeldt, A. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372-378 doi: 10.1038/nphoton.2017.60.
[17] Wang, Z., and Lang, X. Visible light photocatalysis of dye-sensitized TiO2: the selective aerobic oxidation of amines to imines. Appl. Catal. B: Environ. 2018, 224, 404-409, doi: 10.1016/j.apcatb.2017.10.002.
[18] Kurniawan, Y.S., Lintang, H.O., and Yuliati, L. Preparation of green-emissive zinc oxide composites using natural betacyanin pigment isolated from red dragon fruit. Indones. J. Chem. 2021, 1, 57-65. doi: 10.22146/ijc.52351.
[19] Kurniawan, Y.S., Adhiwibawa, M.A.S., Setiyono, E., Fahmi, M.R.G., and Lintang, H.O. Statistical analysis for evaluating natural yellow coloring agents from peel of local fruits in Malang: Mangosteen, honey pineapple, and red dragon fruits. Indones. J. Nat. Pigm. 2019, 1, 49-52, doi: 10.33479/ijnp.2019.01.2.49.
[20] Purnomo, T.A.B., Kurniawan, Y.S., Kesuma, R.F., and Yuliati, L. Selection of maceration solvent for natural pigment extraction from red fruit (Pandanus conoideus Lam). Indones. J. Nat. Pigm. 2020, 2, 8-12, doi: 10.33479/ijnp.2020.02.1.8.
[21] Kurniawan, Y.S., Fahmi, M.R.G., and Yuliati, L. Isolation and optical properties of natural pigments from purple mangosteen peels. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 833, 012018, doi: 10.1088/1757-899X/833/1/012018.
[22] Venter, A., Joubert, E., and de Beer, D. Characterisation of phenolic compounds in south african plum fruits (Prunus salicina lindl.) using HPLC coupled with diode-array, fluorescence, mass spectrometry and on-line antioxidant detection. Molecules 2013, 18, 5072-5090, doi: 10.3390/molecules18055072.
[23] Britton, G., Liaen, S., and Pfander, H. Carotenoids vol. 1A: Isolation and Analysis. Birkhauser Verlag; Basel, Switzerland, 1995.
[24] Morales, F., Cartelat, A., Alvarez-Fernandez, A., Moya, I., and Cerovic, Z.G. Time-resolved spectral studies of blue-green fluorescence of artichoke (Cynara cardunculus L. var. scolymus) leaves: Identification of chlorogenic acid as one of the major fluorophores and age-mediated changes. J. Agric. Food Chem. 2005, 53, 9668, doi: 10.1021/jf051842q.
[25] Lourith, N., and Kanlayavattanakul, M. Antioxidant and stability of dragon fruit peel colour. Agro Food Ind. Hi-Tech 2013, 24, 56-58.
Published
2021-08-31
How to Cite
Priyangga, K. T. A., Kurniawan, Y. S., Setiyono, E., Fahmi, M. R. G., Lintang, H. O., & Yuliati, L. (2021). A Fluorescence Study on the Extracts of Red Dragon Fruit Peel in Various Solvents. Indonesian Journal of Natural Pigments, 3(2), 48. https://doi.org/10.33479/ijnp.2021.03.2.48
Section
Full Paper

Most read articles by the same author(s)