Spectroscopy Study of Honey Pineapple Peels Extracted in Different Solvents

  • Yehezkiel Steven Kurniawan Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, East Java, Indonesia https://orcid.org/0000-0002-4547-239X
  • Edi Setiyono Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, East Java, Indonesia https://orcid.org/0000-0002-6077-7693
  • Marcelinus Alfasisurya Setya Adhiwibawa Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, East Java, Indonesia https://orcid.org/0000-0002-2191-7411
  • Krisfian Tata Aneka Priyangga Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang 65151, East Java, Indonesia https://orcid.org/0000-0002-4119-2470
  • Leny Yuliati Department of Chemistry, Faculty of Science and Technology, Universitas Ma Chung, Malang 65151, East Java, Indonesia http://orcid.org/0000-0003-1600-5757
Keywords: honey pineapple, solvent, maceration, characterization, spectroscopy

Abstract

In the present work, we investigated the extract of honey pineapple peels in distilled water, ethanol, and acetone solvents. The spectroscopy study of each extract was performed using a Fourier transform infrared (FTIR) spectrometer, an ultraviolet-visible (UV-Vis) spectrophotometer, and a spectrofluorometer. The FTIR spectrum of the distilled water extract indicated that the distilled water extract may contain alcohol or carboxylic acid compounds. Meanwhile, the ethanolic extract may contain alcohol or carboxylic acid, or ether compounds. On the other hand, the acetone extract may contain alcohol or ether or aromatic or aliphatic compounds. The UV-Vis spectrum of the honey pineapple peels extracted in the distilled water, ethanol, and acetone showed a broad absorption signal at UV region (< 300 nm), four absorption signals at UV region (232-368 nm), and four absorption signals at UV region (231-368 nm) with a weak absorption signal at the visible region at 559 nm, respectively. The distilled water and acetone extracts gave fluorescence signals, however, the ethanolic extract showed no fluorescence intensity. From the FTIR, UV-Vis, and fluorescence spectra characterization, the extracted natural pigments from the honey pineapple peels in distilled water, ethanol, and acetone solvents were identified. The distilled water extract may contain polar flavonoid or steroid compounds while the ethanolic extract may contain polar carotenoid pigments. On the other hand, the acetone extract may contain carotenoid and chlorophyll pigments as shown by an emission signal at 670 nm.

Downloads

Download data is not yet available.

References

[1] Netto, A.B.P. Tropical fruits as natural, exceptionally rich, sources of bioactive compounds. Int. J. Fruit Sci. 2018, 18, 231-242, doi: 10.1080/15538362.2018.1444532
[2] Cannon, R.J., and Ho, C.T. Volatile sulfur compounds in tropical fruits. J. Food Drug Anal. 2018, 26, 445-468, doi: 10.1016/j.fda.2018.01.014
[3] Ningrum, A., and Schreiner, M. Review: Extensive potentiality of selected tropical fruits from Indonesia. Indones Food Nutr. Prog. 2017, 14, 85-90, doi: 10.22146/ifnp.28427.
[4] Jumina, Nurmala, A., Fitria, A., Pranowo, D., Sholikhah, E.N., Kurniawan, Y.S., and Kuswandi, B. Monomyristin and monopalmitin derivatives: Synthesis and evaluation as potential antibacterial and antifungal agents. Molecules 2018, 23, 3141, doi: 10.3390/molecules23123141
[5] Purnomo, T.A.B., Kurniawan, Y.S., Kesuma, R.F., and Yuliati, L. Selection of maceration solvent for natural pigment extraction from red fruit (Pandanus conoideus Lam). Indones. J. Nat. Pigm. 2020, 2, 8-12, doi: 10.33479/ijnp.2020.02.1.8.
[6] Jumina, Mutmainah, Purwono, B., Kurniawan, Y.S., and Syah, Y.M. Antibacterial and antifungal activity of three monosaccharide monomyristate derivatives. Molecules 2019, 24, 3692, doi: 10.3390/molecules2403692
[7] Brat, P., Hoang, L.N.T., Soler, A., Reynes, M., and Brillouet, J.M. Physicochemical characterization of a new pineapple hybrid (FLHORAN41 Cv.). J. Agric. Food Chem. 2004, 52, 6170-6177, doi: 10.1021/jf0492621
[8] Sibaly, S., and Jeetah, P. Production of paper from pineapple leaves. J. Environ. Chem. Eng. 2017, 5, 5978-5986, doi: 10.1016/j.jece.2017.11.026
[9] Mederos, M.P., Galdon, B.R., Romero, C.D., Rodrigo, G.L., and Rodriguez, E.M. Quality evaluation of minimally fresh-cut processed pineapples. LWT 2020, 129, 109607, doi: 10.1016/j.lwt.2020.109607
[10] Brito, T.B.N., Pereira, A.P.A., Pastore, G.M., Moreira, R.F.A., Ferreira, M.S.L., and Fai, A.E.C. Chemical composition and physicochemical characterization for cabbage and pineapple by-products fluor valorization. LWT 2020, 124, 109028, doi: 10.1016/j.lwt.2020.109028
[11] Hossain, M. A.; Rahman, S. M. M. Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res. Int. 2011, 44, 672–676, doi:10.1016/j.foodres.2010.11.036.
[12] Debnath, R., Chatterjee, N., Das, S., Mishra, S., Bose, D., Banerjee, S., Das, S., Saha, K.D., Ghosh, D., and Maiti, D. Bromelain with peroxidase from pineapple are more potent to target leukemia growth inhibition – A comparison with only bromelain. Toxicol. in Vitro 2019, 55, 24-32, doi: 10.1016/j.tiv.2018.11.004
[13] Jing, Y., Huang, J., and Yu, X. Maintenance of the antioxidant capacity of fresh-cut pineapple by procyanidin-grafted chitosan. Postharvest Biol. Technol. 2019, 154, 79-86, doi: 10.1016/j.postharvbio.2019.04.022
[14] Banarjee, S., Arora, A., Vijayaraghavan, R., and Patti, A.F. Extraction and crosslinking of bromelain aggregates for improved stability and reusability from pineapple processing waste. Int. J. Biol. Macromol. 2020, 158, 318-326, doi: 10.1016/j.ijbiomac.2020.04.220
[15] Maneeintr, K., Leewisuttikul, T., Kerdsuk, S., and Charinpanitkul, T. Hydrothermal and enzymatic treatments of pineapple waste for energy production. Energy Procedia 2018, 152, 1260-1265, doi: 10.1016/j.egypro.2018.09.179
[16] Barros, S.S., Junior, W.A.G.P., Sa, I.S.C., Takeno, M.L., Nobre, F.X., Pinheiro, W., Manzato, L., Iglauer, S., and Freitas, F.A. Pineapple (Ananas comosus) leaves ash as a solid base catalyst for biodiesel synthesis. Bioresour. Technol. 2020, 312, 123569, doi: 10.1016/j.biortech.2020.123569
[17] Do, N.H.N., Luu, T.P., Thai, Q.B., Le, D.K., Chau, N.D.Q., Nguyen, S.T., Le, P.K., Thien, N.P., and Duong, H.M. Heat and sound insulation applications of pineapple aerogels from pineapple waste. Mater. Chem. Phys. 2020, 242, 122267, doi: 10.1016/j.matchemphys.2019.122267
[18] Kurniawan, Y.S., Adhiwibawa, M.A.S., Setiyono, E., Fahmi, M.R.G., and Lintang, H.O. Statistical analysis for evaluating natural yellow coloring agents from peel of local fruits in Malang: Mangosteen, honey pineapple and red dragon fruits. Indones. J. Nat. Pigm. 2019, 1, 49-52, doi: 10.33479/ijnp.2019.01.2.49.
[19] Kurniawan, Y.S., Fahmi, M.R.G., and Yuliati, L. Isolation and optical properties of natural pigments from purple mangosteen peels. IOP Conf. Ser. 2020, 833, 012018, doi: 10.1088/1757-899X/833/1/012018
[20] Lagoa, R., Samhan-Arias, A.K., and Merino, C.G. Correlation between the potency of flavonoids for cytochrome c reduction and inhibition of cardiolipin-induced peroxidase activity. BioFactors 2017, 43, 451-468. doi: 10.1002/biof.1357
[21] Faletrov, Y., Brzostek, A., Plocinska, R., Dziadek, J., Rudaya, E., Edimecheva, I., and Shkumatov, V. Uptake and metabolism of fluorescent steroids by mycobacterial cells. Steroids 2017, 117, 29-37. doi: 10.1016/j.steroids.2016.10.001
[22] Guidi, L., Piccolo, E.L., and Landi, M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 2019, 10, 174. doi: 10.3389/fpls.2019.00174
Published
2021-02-27
How to Cite
Kurniawan, Y., Setiyono, E., Adhiwibawa, M., Priyangga, K., & Yuliati, L. (2021). Spectroscopy Study of Honey Pineapple Peels Extracted in Different Solvents. Indonesian Journal of Natural Pigments, 3(1), 32-35. https://doi.org/10.33479/ijnp.2021.03.1.32-35
Section
Full Paper

Most read articles by the same author(s)