Enhancing the Conversion Efficiency of Dye-Sensitized Solar Cells based on Betalain Natural Dye as The Potential Photosensitizer: A Review

  • Christyowati Primi Sagita Department of Industrial Chemistry, Pukyong National University, Busan, 48513, South Korea https://orcid.org/0000-0002-9626-091X
Keywords: betalain dye, carboxyl groups, photosensitizer, natural dye, dye-sensitized solar cells

Abstract

Natural dyes have gained much attentions as the cheap photosensitizer for dye-sensitized solar cells because of their abundant availability in nature. One of potential natural dyes is betalain dye. Betalain dye mostly can be found in family plant of Caryophyllales. This dye has carboxyl groups and can absorb light until wavelength of 600 nm since betalain dye can be in red-purple color. However, betalain dye is still reported to give a lower efficiency in dye-sensitized solar cells device because of its nature properties as compared to the synthetic dyes. This encourages many researchers to investigate the method for developing betalain ability in purpose to enhance the cell device efficiency. To date, there are two methods having been reported for their positive results in increasing the efficiency of cell device based on betalain dye, i.e., combining the betalain dye with other natural dyes, and selecting the suitable solvent and pH in betalain dye extraction. Therefore, in this review, the summary about potential of betalain dye as photosensitizer and what properties of this dye have as the photosensitizer would be described. The summary of methods for optimizing betalain dye in improving the conversion efficiency of dye-sensitized solar cell also will be presented for better understanding the potential of this dye.

Downloads

Download data is not yet available.

References

[1] N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella and C. Barolo, Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells, Green Chem., 2020, 22, 7168–7218, DOI: 10.1039/d0gc01148g.
[2] J. Gong, K. Sumathy, Q. Qiao and Z. Zhou, Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends, Renew. Sustain. Energy Rev., 2017, 68, 234–246, DOI: 10.1016/j.rser.2016.09.097.
[3] K. Sharma, V. Sharma and S.S. Sharma, Dye-Sensitized Solar Cells: Fundamentals and Current Status, Nanoscale Res. Lett., 2018, 13, DOI: 10.1186/s11671-018-2760-6.
[4] P.H. Joshi, D.P. Korfiatis, S.F. Potamianou and K.A.T. Thoma, Selected parameters leading to an optimized DSSC performance, Russ. J. Electrochem., 2013, 49, 628–632, DOI: 10.1134/S1023193513070045.
[5] S. Shalini, R. Balasundaraprabhu, T. Satish Kumar, N. Prabavathy, S. Senthilarasu and S. Prasanna, Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review, Int. J. Energy Res., 2016, 40, 1303–1320, DOI: 10.1002/er.3538.
[6] A. Carella, F. Borbone and R. Centore, Research progress on photosensitizers for DSSC, Front. Chem., 2018, 6, 1–24, DOI: 10.3389/fchem.2018.00481.
[7] K. Kalyanasundaram, N. Vlachopoulos, V. Krishnan, A. Monnier and M. Grätzel, Sensitization of TiO2 in the visible light region using zinc porphyrins, J. Phys. Chem., 1987, 91, 2342–2347, DOI: 10.1021/j100293a027.
[8] B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature., 1991, 353, 737–739, DOI: https://doi.org/10.1038/353737a0.
[9] L. Wei, Y. Na, Y. Yang, R. Fan, P. Wang and L. Li, Efficiency of ruthenium dye sensitized solar cells enhanced by 2,6-bis[1-(phenylimino)ethyl]pyridine as a co-sensitizer containing methyl substituents on its phenyl rings, Phys. Chem. Chem. Phys., 2015, 17, 1273–1280, DOI: 10.1039/c4cp04240a.
[10] S. Aghazada and M.K. Nazeeruddin, Ruthenium complexes as sensitizers in dye-sensitized solar cells, Inorganics., 2018, 6, DOI: 10.3390/inorganics6020052.
[11] G. Calogero, A. Bartolotta, G. Di Marco, A. Di Carlo and F. Bonaccorso, Vegetable-based dye-sensitized solar cells, Chem. Soc. Rev., 2015, 44, 3244–3294, DOI: 10.1039/c4cs00309h.
[12] C.P. Lee, C.T. Li and K.C. Ho, Use of organic materials in dye-sensitized solar cells, Mater. Today., 2017, 20, 267–283, DOI: 10.1016/j.mattod.2017.01.012.
[13] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin and M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science (80-. )., 2011, 334, 629–634, DOI: 10.1126/science.1209688.
[14] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin and M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem., 2014, 6, 242–247, DOI: 10.1038/nchem.1861.
[15] H. Hug, M. Bader, P. Mair and T. Glatzel, Biophotovoltaics: Natural pigments in dye-sensitized solar cells, Appl. Energy., 2014, 115, 216–225, DOI: 10.1016/j.apenergy.2013.10.055.
[16] D. Zhang, S.M. Lanier, J.A. Downing, J.L. Avent, J. Lum and J.L. McHale, Betalain pigments for dye-sensitized solar cells, J. Photochem. Photobiol. A Chem., 2008, 195, 72–80, DOI: 10.1016/j.jphotochem.2007.07.038.
[17] N. Gokilamani, N. Muthukumarasamy, M. Thambidurai, A. Ranjitha and D. Velauthapillai, Basella alba rubra spinach pigment-sensitized TiO2 thin film-based solar cells, Appl. Nanosci., 2015, 5, 297–303, DOI: 10.1007/s13204-014-0317-2.
[18] A. Thankappan, S. Divya, A.K. Augustine, C.P. Girijavallaban, P. Radhakrishnan, S. Thomas and V.P.N. Nampoori, Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell, Thin Solid Films., 2015, 583, 102–107, DOI: 10.1016/j.tsf.2015.03.052.
[19] N.T.R.N. Kumara, A. Lim, C.M. Lim, M.I. Petra and P. Ekanayake, Recent progress and utilization of natural pigments in dye sensitized solar cells: A review, Renew. Sustain. Energy Rev., 2017, 78, 301–317, DOI: 10.1016/j.rser.2017.04.075.
[20] W.S. Choo, Betalains: Application in Functional Foods, 2018, 1–28, DOI: 10.1007/978-3-319-54528-8_38-1.
[21] B. Neelwarne, Red beet biotechnology: Food and pharmaceutical applications, Red Beet Biotechnol. Food Pharm. Appl., 2012, 1–435, DOI: 10.1007/978-1-4614-3458-0.
[22] Y. Cai, M. Sun and H. Corke, Antioxidant activity of betalains from plants of the Amaranthaceae, J. Agric. Food Chem., 2003, 51, 2288–2294, DOI: 10.1021/jf030045u.
[23] I.B. Slimen, T. Najar and M. Abderrabba, Chemical and antioxidant properties of betalains, J. Agric. Food Chem., 2017, 65, 675–689, DOI: 10.1021/acs.jafc.6b04208.
[24] M.I. Khan, Plant Betalains: Safety, Antioxidant Activity, Clinical Efficacy, and Bioavailability, Compr. Rev. Food Sci. Food Saf., 2016, 15, 316–330, DOI: 10.1111/1541-4337.12185.
[25] E. Madadi, S. Mazloum-Ravasan, J.S. Yu, J.W. Ha, H. Hamishehkar and K.H. Kim, Therapeutic application of betalains: A review, Plants., 2020, 9, 1–27, DOI: 10.3390/plants9091219.
[26] A.U. Kabir, M. Bin Samad, A. Ahmed, M.R. Jahan, F. Akhter, J. Tasnim, S.M. Nageeb Hasan, S.S. Sayfe and J.M.A. Hannan, Aqueous fraction of beta vulgaris ameliorates hyperglycemia in diabetic mice due to enhanced glucose stimulated insulin secretion, mediated by acetylcholine and GLP-1, and elevated glucose uptake via increased membrane bound GLUT4 transporters, PLoS One., 2015, 10, 1–23, DOI: 10.1371/journal.pone.0116546.
[27] F. Alam, Z. Shafique, S.T. Amjad and M.H.H. Bin Asad, Enzymes inhibitors from natural sources with antidiabetic activity: A review, Phyther. Res., 2019, 33, 41–54, DOI: 10.1002/ptr.6211.
[28] R. Ramamoorthy, N. Radha, G. Maheswari, S. Anandan, S. Manoharan and R. Victor Williams, Betalain and anthocyanin dye-sensitized solar cells, J. Appl. Electrochem., 2016, 46, 929–941, DOI: 10.1007/s10800-016-0974-9.
[29] G. Calogero, J.H. Yum, A. Sinopoli, G. Di Marco, M. Grätzel and M.K. Nazeeruddin, Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells, Sol. Energy., 2012, 86, 1563–1575, DOI: 10.1016/j.solener.2012.02.018.
[30] K.A. Kumar, K. Subalakshmi and J. Senthilselvan, Effect of mixed valence state of titanium on reduced recombination for natural dye-sensitized solar cell applications, J. Solid State Electrochem., 2016, 20, 1921–1932, DOI: 10.1007/s10008-016-3191-x.
[31] N. Patni, S. G. Pillai and P. Sharma, Effect of using betalain, anthocyanin and chlorophyll dyes together as a sensitizer on enhancing the efficiency of dye-sensitized solar cell, Int. J. Energy Res., 2020, 44, 10846–10859, DOI: 10.1002/er.5752.
[32] D. Butera, L. Tesoriere, F. Di Gaudio, A. Bongiorno, M. Allegra, A.M. Pintaudi, R. Kohen and M.A. Livrea, Antioxidant activities of sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: Betanin and indicaxanthin, J. Agric. Food Chem., 2002, 50, 6895–6901, DOI: 10.1021/jf025696p.
[33] M.J. García-Salinas and M.J. Ariza, Optimizing a simple natural dye production method for dye-sensitized solar cells: Examples for betalain (bougainvillea and beetroot extracts) and anthocyanin dyes, Appl. Sci., 2019, 9, DOI: 10.3390/app9122515.
[34] G. Calogero, G. Di Marco, S. Cazzanti, S. Caramori, R. Argazzi, A. Di Carlo and C.A. Bignozzi, Efficient dye-sensitized solar cells using red turnip and purple wild Sicilian prickly pear fruits, Int. J. Mol. Sci., 2010, 11, 254–267, DOI: 10.3390/ijms11010254.
[35] C. Sandquist and J.L. McHale, Improved efficiency of betanin-based dye-sensitized solar cells, J. Photochem. Photobiol. A Chem., 2011, 221, 90–97, DOI: 10.1016/j.jphotochem.2011.04.030.
[36] A.R. Hernandez-Martinez, M. Estevez, S. Vargas, F. Quintanilla and R. Rodriguez, New dye-sensitized solar cells obtained from extracted bracts of bougainvillea glabra and spectabilis betalain pigments by different purification processes, Int. J. Mol. Sci., 2011, 12, 5565–5576, DOI: 10.3390/ijms12095565.
[37] A.R. Hernández-Martínez, M. Estévez, S. Vargas and R. Rodríguez, Stabilized conversion efficiency and Dye-Sensitized solar cells from Beta vulgaris pigment, Int. J. Mol. Sci., 2013, 14, 4081–4093, DOI: 10.3390/ijms14024081.
[38] R. Hemmatzadeh and A. Mohammadi, Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells, J. Theor. Appl. Phys., 2013, 7, 57, DOI: 10.1186/2251-7235-7-57.
[39] K.U. Isah, U. Ahmadu, A. Idris, M.I. Kimpa, U.E. Uno, M.M. Ndamitso and N. Alu, Betalain pigments as natural photosensitizers for dye-sensitized solar cells: The effect of dye pH on the photoelectric parameters, Mater. Renew. Sustain. Energy., 2015, 4, 5–9, DOI: 10.1007/s40243-014-0039-0.
[40] D. Sengupta, B. Mondal and K. Mukherjee, Visible light absorption and photo-sensitizing properties of spinach leaves and beetroot extracted natural dyes, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2015, 148, 85–92, DOI: 10.1016/j.saa.2015.03.120.
[41] D.N.F.P. Damit, K. Galappaththi, A. Lim, M.I. Petra and P. Ekanayake, Formulation of water to ethanol ratio as extraction solvents of Ixora coccinea and Bougainvillea glabra and their effect on dye aggregation in relation to DSSC performance, Ionics (Kiel)., 2017, 23, 485–495, DOI: 10.1007/s11581-016-1859-y.
[42] F. Kabir, M.M.H. Bhuiyan, M.R. Hossain, H. Bashar, M.S. Rahaman, M.S. Manir, S.M. Ullah, S.S. Uddin, M.Z.I. Mollah, R.A. Khan, S. Huque and M.A. Khan, Improvement of efficiency of Dye Sensitized Solar Cells by optimizing the combination ratio of Natural Red and Yellow dyes, Optik (Stuttg)., 2019, 179, 252–258, DOI: 10.1016/j.ijleo.2018.10.150.
[43] S. Sreeja and B. Pesala, Co-sensitization aided efficiency enhancement in betanin–chlorophyll solar cell, Mater. Renew. Sustain. Energy., 2018, 7, 1–14, DOI: 10.1007/s40243-018-0132-x.
Published
2021-02-26
How to Cite
Sagita, C. (2021). Enhancing the Conversion Efficiency of Dye-Sensitized Solar Cells based on Betalain Natural Dye as The Potential Photosensitizer: A Review. Indonesian Journal of Natural Pigments, 3(1), 1-9. https://doi.org/10.33479/ijnp.2021.03.1.1-9