Characterization of Tambjamines Pigment from Marine Bacterium Pseudoalteromonas sp. PM2 Indigenous from Alor Island, Indonesia

  • Edi Setiyono Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang, Jawa Timur, 65151, Indonesia https://orcid.org/0000-0002-6077-7693
  • Marcelinus Alfasisurya Setya Adhiwibawa Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang, Jawa Timur, 65151, Indonesia https://orcid.org/0000-0002-2191-7411
  • Matheus Randy Prabowo Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang, Jawa Timur, 65151, Indonesia https://orcid.org/0000-0003-4903-5506
  • Tatas H.P. Brotosudarmo Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang, Jawa Timur, 65151, Indonesia https://orcid.org/0000-0002-8219-3293
Keywords: Pigment, Tambjamines, Marine bacteria, Psuedoalteromonas

Abstract

Pigments from marine bacteria have attracted the attention for scientists because of their extensive applications and currently exploration of new pigment sources from marine bacteria is still ongoing. Recently, we have successfully isolated six new yellow-pigmented marine bacteria, strain PS2, PM2, SB11, SB13, SB21, and SB23, isolated from seawater from different sampling sites on Alor Island, Indonesia. The UV−Vis and FTIR spectra of the crude pigment extracts of the six strains showed the characteristics of tambjamines, a group of yellow pigments commonly found in nudibranchs and bryozoans. Moreover, separation and characterization of crude tambjamines extract resulted in five different types of tambjamine with maximum absorbance at the wavelength of 374−392 nm. Based on the analysis of 16S rRNA gene sequences, strain PM2 was closely related to several species in genus Pseudoalteromonas with a similarity of more than 99%. Strain PM2 was designed as Pseudoalteromonas sp. PM2 with accession number LC505058. So far, only two marine bacteria have been known to produce tambjamine and they are from genus Pseudoalteromonas. Our new finding indicated that in the group of marine bacteria, tambjamine might be only synthesized by members from genus Pseudoalteromonas

Downloads

Download data is not yet available.

References

Bein SJ (1954) A study of certain chromogenic bacteria isolated from "Red Tide" water with a description of a new species. Bull Mar Sci Gulf Caribb 4:110–119.
Blackman AJ, Li C (1994) New tambjamine alkaloids from the marine bryozoan Bugula dentata. Aust J Chem 1:1625–1629.
Bowman JP (2007) Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar Drugs 5:220–241. doi: 10.3390/md504220
Carbone M, Irace C, Costagliola F, Castelluccio F, Villani G, Calado G, Padula V, Cimino G, Lucas Cervera J, Santamaria R, Gavagnin M (2010) A new cytotoxic tambjamine alkaloid from the Azorean nudibranch Tambja ceutae. Bioorganic Med Chem Lett 20:2668–2670. doi: 10.1016/j.bmcl.2010.02.020
Carté B, Faulkner DJ (1983) Defensive metabolites from three nembrothid nudibranchs. J Org Chem 48:2314–2318. doi: 10.1021/jo00162a003
Carté B, Faulkner DJ (1986) Role of secondary metabolites in feeding associations between a predatory nudibranch, two grazing nudibranchs, and a bryozoan. J Chem Ecol 12:795–804. doi: 10.1007/BF01012111
Davoli P, Weber RWS (2002) Simple method for reversed-phase high-performance liquid chromatographic analysis of fungal pigments in fruit-bodies of Boletales (Fungi). J Chromatogr A 964:129–135. doi: 10.1016/S0021-9673(02)00664-7
Egan S, James S, Holmström C, Kjelleberg S (2002) Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata. Environ Microbiol 4:433–442. doi: 10.1046/j.1462-2920.2002.00322.x
Franks A, Haywood P, Holmström C, Egan S, Kjelleberg S, Kumar N (2005) Isolation and structure elucidation of a novel yellow pigment from the marine bacterium Pseudoalteromonas tunicata. Molecules 10:1286–1291. doi: 10.3390/10101286
Fuqua WC, Weiner RM (1993) The melA gene is essential for melanin biosynthesis in the marine bacterium Shewanella colwelliana. J Gen Microbiol 139:1105–1114. doi: 10.1099/00221287-139-5-1105
Gauthier G, Gauthier M, Christen R (1995) Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45:755–761. doi: 10.1099/00207713-45-4-755
Gerber NN (1975) Prodigiosin-like pigments. Crit Rev Microbiol 469–485.
Gross J (1991) Pigments in vegetables - chlorophylls and carotenoids. An AVI Book, New York.
Hansen AJ, Weeks OB, Colwell RR (1965) Taxonomy of Pseudomonas piscicida (Bein) Buck, Meyers, and Leifson. J Bacteriol 89:752–761. doi: 10.1128/jb.89.3.752-761.1965
Hernández PI, Moreno D, Javier AA, Torroba T, Pérez-Tomás R, Quesada R (2012) Tambjamine alkaloids and related synthetic analogs: Efficient transmembrane anion transporters. Chem Commun 48:1556–1558. doi: 10.1039/c1cc11300c
Ivanova EP, Kiprianova EA, Mikhailov V V., Levanova GF, Garagulya AD, Gorshkova NM, Yumoto N, Yoshikawa S (1996) Characterization and identification of marine Alteromonas nigrifaciens strains and emendation of the description. Int J Syst Bacteriol 46:223–228. doi: 10.1099/00207713-46-1-223
Jeong D-W, Park J-S (2008) Characterization of pigment-producing Pseudoalteromonas spp. from marine habitats and their optimal conditions for pigment production. J Life Sci 18:1752–1757. doi: 10.5352/JLS.2008.18.12.1752
Kahng HY, Chung BS, Lee DH, Jung JS, Park JH, Jeon CO (2009) Cellulophaga tyrosinoxydans sp. nov., a tyrosinase-producing bacterium isolated from seawater. Int J Syst Evol Microbiol 59:654–657. doi: 10.1099/ijs.0.003210-0
Kamei Y, Isnansetyo A (2002) Lysis of methicillin-resistant Staphylococcus aureus by 2, 4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga. Int J Antimicrob Agents 21:71–74. doi: 10.1016/S0924-8579(02)00251-0
Kotob SI, Coon SL, Quintero EJ, Weiner RM (1995) Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae, a Hyphomonas strain, and Shewanella colwelliana. Appl Environ Microbiol 61:1620–1622. doi: 10.1128/aem.61.4.1620-1622.1995
Koyama J (2006) Anti-infective quinone derivatives of recent patents. Recent Pat Antiinfect Drug Discov 1:113–125. doi: 10.2174/978160805158811001010294
Lee YK, Jung HJ, Lee HK (2006) Marine bacteria associated with the Korean brown alga, Undaria pinnatifida. J Microbiol 44:694–698.
Li F, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A, Zeeck A, Laatsch H (2005) Chinikomycins A and B: Isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045. J Nat Prod 68:349–353. doi: 10.1021/np030518r
Lindquist N, Fenical W (1991) New tambjamine class alkaloids from the marine ascidian Atapozoa sp. and its nudibranch predators. Origin of the tambjamines in Atapozoa. Experientiaa 47:504–506.
Maskey RP, Helmke E, Laatsch H (2003a) Himalomycin A and B: Isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. J Antibiot (Tokyo) 56:942–949. doi: 10.7164/antibiotics.56.942
Maskey RP, Kock I, Helmke E, Laatsch H (2003b) Isolation and structure determination of phenazostatin D, a new phenazine from a marine actinomycete isolate Pseudonocardia sp. B6273. Zeitschrift fur Naturforsch - Sect B J Chem Sci 58:692–694. doi: 10.1515/znb-2003-0714
Meyers SP, Baslow MH, Bein SJ, Marks CE (1959) Studies of Flavobacterium piscicida Bein I. growth, toxicity, and ecological considerations. J Bacteriol 78:225–230.
Nakajima S, Kojiri K, Suda H (2012) A new antitumor substance, BE-18591, produced by a Streptomycete. II. Structure determination. J Antibiot (Tokyo) 46:1894–1896. doi: 10.7164/antibiotics.46.1894
Pangestuti R, Kim SK (2011) Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 3:255–266. doi: 10.1016/j.jff.2011.07.001
Pattnaik P, Roy U, Jain P (1997) Biocolours: New Generation Additives for Food. Indian Food Ind 16: 21–32
Picott KJ, Deichert JA, DeKemp EM, Schatte G, Sauriol F, Ross AC (2019) Isolation and characterization of tambjamine MYP1, a macrocyclic tambjamine analogue from marine bacterium Pseudoalteromonas citrea. Medchemcomm 10:478–483. doi: 10.1039/c9md00061e
Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: Impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670. doi: 10.1007/s00253-010-2509-3
Lovelock JE, Rapley CG (2007) Ocean pipes could help the Earth cure itself. Nature 449, 403. doi.org/10.1038/449403a
Rettori D, Durán N (1998) Production, extraction and purification of violacein: An antibiotic pigment produced by Chromobacterium violaceum. World J Microbiol Biotechnol 14:685–688. doi: 10.1023/A:1008809504504
Ruzafa C, Sanchez-Amat A, Solano F (1995) Characterization of the melanogenic system in Vibrio cholerae, ATCC 14035. Pigment Cell Res 8:147–152. doi: 10.1111/j.1600-0749.1995.tb00656.x
Samanta Saha RT and SJ (2008) Phenazine pigments from Pseudomonas aeruginosa and their application as antibacterial agent and food colourants. Res Iournal Microbiol 3:122–128. doi: 10.3923/jm.2008.122.128
Satomi M, Mikhailov V V, Christen R, Ivanova EP, Shevchenko LS, Svetashev VI, Sawabe T, Lysenko AM, Gorshkova NM (2015) Pseudoalteromonas maricaloris sp. nov., isolated from an Australian sponge, and reclassification of Pseudoalteromonas aurantia NCIMB 2033 as Pseudoalteromonas flavipulchra sp. nov. Int J Syst Evol Microbiol 52:263–271. doi: 10.1099/00207713-52-1-263
Setiyono, Heriyanto, Pringgenies, Shioi, Kanesaki, Awai, Brotosudarmo (2019) Sulfur-containing carotenoids from a marine coral symbiont Erythrobacter flavus Strain KJ5. Mar Drugs 17:349. doi: 10.3390/md17060349
Setiyono E, Alfasisurya M, Adhiwibawa S, Indrawati R, Nur M, Prihastyanti U, Shioi Y, Hardo T, Brotosudarmo P (2020) An Indonesian marine bacterium, Pseudoalteromonas rubra, produces antimicrobial prodiginine pigments. ACS Omega 5:4626–4635. doi: 10.1021/acsomega.9b04322
Soliev AB, Hosokawa K, Enomoto K (2011) Bioactive pigments from marine bacteria: Applications and physiological roles. Evidence-based Complement Altern Med. doi: 10.1155/2011/670349
Venkateswaran K, Dohmoto N (2000) A novel marine mussel-thread-degrading bacterium isolated from the Sea of Japan. Int J Syst Evol Microbiol 565–574.
Walsh PS, Metzger DA, Higuchi R (2013) Biotechniques 30th anniversary gem Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 54:506–513. doi: 10.2144/000114018
Published
2021-02-26
How to Cite
Setiyono, E., Adhiwibawa, M., Prabowo, M., & Brotosudarmo, T. (2021). Characterization of Tambjamines Pigment from Marine Bacterium Pseudoalteromonas sp. PM2 Indigenous from Alor Island, Indonesia. Indonesian Journal of Natural Pigments, 3(1), 16-23. https://doi.org/10.33479/ijnp.2021.03.1.16-23
Section
Full Paper