Carotenoid Production by Rhodosporidium paludigenum Using Cassava Starch Hydrolyzed by Bacillus subtilis as Substrate

  • Renna Eliana Warjoto Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia
  • Felianti Felianti Food Technology Study Program, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia
  • Bibiana Widiyati Lay Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia
Keywords: β-carotene, Bacillus subtilis, Rhodosporidium paludigenum, cassava, xanthophyll


Carotenoids are natural pigments with colors ranging from yellow to red that are beneficial for food, cosmetics, and animal feed industries. These pigments can be found in fruits, vegetables, algae, and microorganisms. Among all microorganisms that have been known to produce carotenoids, Rhodosporidium paludigenum is still poorly investigated. Therefore, this study aimed to determine the potential of carotenoid production by R. paludigenum using cassava starch hydrolyzed by Bacillus subtilis as a substrate. The cassava starch for hydrolysis was divided into four concentrations, i.e., 2%, 4%, 6%, and 8% w/v. During the hydrolysis period, the amylase enzyme activity produced by B. subtilis was evaluated. The reducing sugar concentration was then examined to determine the optimum medium for carotenoid production. The highest amylase enzyme activity was produced on the second day in all cassava starch concentrations. However, the highest reducing sugar concentration was discovered in the 6% w/v cassava starch concentration. Thus, a batch submerged fermentation for carotenoid production by R. paludigenum was performed using the hydrolysate as the sole substrate. At the end of the fermentation, the total carotenoid was extracted, and the concentration was determined using spectrophotometry. The total yield of xanthophyll over biomass was higher than that of β-carotene. These findings elucidated the potency of cassava starch hydrolysate obtained from the starch hydrolyzed by B. subtilis, for carotenoid production by the red yeast R. paludigenum.


Download data is not yet available.


Galasso, C., Corinaldesi, C., and Sansone, C., Carotenoids from marine organisms: Biological functions and industrial applications., Antioxidants. 2017, 6(4), doi: 10.3390/antiox6040096.

Maoka, T., Carotenoids as natural functional pigments, J. Nat. Med., 2020, 74(1), 1–16, doi: 10.1007/s11418-019-01364-x.

Kusdiyantini, E. and Budiharjo, A., The antioxidant growth and potency of yeast Rhodosporidium Paludigenum DUCC Y-007 on different mediums, J. Sains dan Mat., 2014, 22(4), 97-101–101.

Septiany, G.J., Putri, W.D.R., Panca, I.N., Heriyanto, H., and Limantara, A.P.D.L., Carotenoid analysis of ripe banana flesh and peel from three cultivars of banana, Indones. J. Nat. Pigment, 2019, 1(2), 60, doi: 10.33479/ijnp.2019.01.2.60.

Soegiarto, M.I.P., Heriyanto, H., Adhiwibawa, M.A.S., Widyastuti, E., Putri, W.D.R., and Limantara, L., The effects of steaming on color and carotenoid absorption spectra of orange-, yellow- and purple-fleshed sweet potatoes (Ipomoea batatas (L.) Lamb.), Indones. J. Nat. Pigment, 2019, 1(2), 42, doi: 10.33479/ijnp.2019.01.2.42.

Salim, K.P., Chandra, R.D., Heriyanto, H., Susilaningsih, D., Limantara, L., and Brotosudarmo, T.H.P., Economically potential pigments from marine blue-green algae for the application in food and health, Indones. J. Nat. Pigment, 2019, 1(2), 37, doi: 10.33479/ijnp.2019.01.2.37.

Prihastyanti, M.N., Kurniawan, J.M., Yusuf, M.M., Azmi, S.S., Ilmi, M.C., Indarto, M.L., et al., Intensity ratio of LH2 complexes from Rhodopseudomonas palustris and Rhodobacter sphaeroides for purity determination, Indones. J. Nat. Pigment, 2020, 2(1), 13, doi: 10.33479/ijnp.2020.02.1.13.

Machado, W.R.C., and Burkert, J.F.M., Optimization of agroindustrial medium for the production of carotenoids by wild yeast Sporidiobolus pararoseus, African J. Microbiol. Res., 2015, 9(4), 209–19, doi: 10.5897/AJMR2014.7096.

Han, M., Xu, Z-Y., Du, C., Qian, H., and Zhang, W.G., Effects of nitrogen on the lipid and carotenoid accumulation of oleaginous yeast Sporidiobolus pararoseus, Bioprocess Biosyst. Eng., 2016, 39(9), 1425–33, doi: 10.1007/s00449-016-1620-y.

Zhang, Z., Zhang, X., and Tan, T., Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation, Bioresour. Technol., 2014, 157, 149–53, doi: 10.1016/j.biortech.2014.01.039.

Machado, W.R.C., Da Silva, L.G., Vanzela, E.S.L., and Del Bianchi, V.L., Evaluation of the process conditions for the production of microbial carotenoids by the recently isolated Rhodotorula mucilaginosa URM 7409, Brazilian J. Food Technol., 2019, 22, 1–14, doi: 10.1590/1981-6723.26718.

Castelblanco-Matiz, L.M., Barbachano-Torres, A., Ponce-Noyola, T., Ramos-Valdivia, A.C., García-Rojas, C.M.C., Flores-Ortiz, C.M., et al., Carotenoid production and gene expression in an astaxanthin-overproducing Xanthophyllomyces dendrorhous mutant strain, Arch. Microbiol., 2015, 197(10), 1129–39, doi: 10.1007/s00203-015-1153-9.

Cardoso, L.A.C., Jäckel, S., Karp, S.G., Framboisier, X., Chevalot, I., and Marc, I., Improvement of Sporobolomyces ruberrimus carotenoids production by the use of raw glycerol, Bioresour. Technol., 2016, 200, 374-379, doi: 10.1016/j.biortech.2015.09.108.

Freitas, C, Parreira, T.M., Roseiro, J., Reis, A., and Da Silva, T.L., Selecting low-cost carbon sources for carotenoid and lipid production by the pink yeast Rhodosporidium toruloides NCYC 921 using flow cytometry, Bioresour. Technol., 2014, 158, 355–9, doi: 10.1016/j.biortech.2014.02.071.

Singh, G., Jawed, A., Paul, D., Bandyopadhyay, K.K., Kumari, A., and Haque, S.. Concomitant production of lipids and carotenoids in Rhodosporidium toruloides under osmotic stress using response surface methodology, Front. Microbiol., 2016, 7, 1–13, doi: 10.3389/fmicb.2016.01686.

Nasirian, N., Mirzaie, M., Cicek, N., and Levin, D.B., Lipid and carotenoid synthesis by Rhodosporidium diobovatum, grown on glucose versus glycerol, and its biodiesel properties, Can. J. Microbiol., 2018, 64(4), 277–89, doi: 10.1139/cjm-2017-0613.

Yimyoo, T., Yongmanitchai, W., and Limtong, S.. Carotenoid production by Rhodosporidium paludigenum DMKU3-LPK4 using glycerol as the carbon source, Kasetsart J. Nat. Sci., 2011, 45(1), 90–100.

Kanti, A., Indonesian oleaginous yeasts isolated from Piper betle and P. nigrum, Mycosphere, 2013, 4(5), 1015–26, doi: 10.5943/mycosphere/4/5/15.

Kurtzman, C., Fell, J.W., and Boekhout, T., The yeasts: a taxonomic study. 5th ed. Elsevier, San Diego, 2011.

Tran, Q.-V., Duong, Q.-C., Tran, D.-K., and Ngo, D.-N., Rhodosporidium sp. growth in molasses medium and extraction of its astaxanthin by using HCl, Vietnam J. Sci. Technol., 2018, 55(1A), 8, doi: 10.15625/2525-2518/55/1a/12377.

Chaturvedi, S., Kumari, A., Nain, L., and Khare, S.K., Bioprospecting microbes for single-cell oil production from starchy wastes, Prep. Biochem. Biotechnol., 2018, 48(3), 296–302, doi: 10.1080/10826068.2018.1431783.

Zahidah, D. and Shovitri, M., Isolasi, karakterisasi dan potensi bakteri aerob sebagai pendegradasi limbah organik, Jurnal Sains dan Seni Pomits, 2013, 2(1), 12–5.

Pundir, R.K., Rana, S., Kashyap, N., and Kaur, A., Probiotic potential of lactic acid bacteria isolated from food samples: An in vitro study, J. Appl. Pharm. Sci., 2013, 3(3), 85–93, doi: 10.7324/JAPS.2013.30317.

Shafaat, S., Akram, M., and Rehman, A.. Isolation and characterization of a thermostable -amylase from Bacillus subtilis, African J. Microbiol. Res., 2011, 5(20), 3334–8, doi: 10.5897/ajmr11.666.

Poontawee, R., Yongmanitchai, W., and Limtong, S.. Lipid production from a mixture of sugarcane top hydrolysate and biodiesel-derived crude glycerol by the oleaginous red yeast, Rhodosporidiobolus fluvialis, Process Biochem., 2018, 66, 150–61, doi: 10.1016/j.procbio.2017.11.020.

Tarangini, K. and Mishra, S.. Carotenoid production by Rhodotorula sp. on fruit waste extract as a sole carbon source and optimization of key parameters, Iran. J. Chem. Chem. Eng., 2014, 33(3), 89–99.

Hernández-Almanza, A., Navarro-Macías, V., Aguilar, O., Aguilar-González, M.A., and Aguilar, C.N., Carotenoids extraction from Rhodotorula glutinis cells using various techniques: A comparative study, Indian J. Exp. Biol., 2017, 55(7), 479–84.

Ravindar, J. D. and Elangovan, N. Molecular identification of amylase producing Bacillus subtilis and detection of optimal conditions, J. Pharm. Res., 2013, 6(4), 426-30, doi: 10.1016/j.jopr.2013.04.001.

Dutta, P., Deb, A., and Majumdar, S. Optimization of the medium for the production of extracellular amylase by the Pseudomonas stutzeri ISL B5 isolated from municipal solid waste, Int. J. Microbiol, 2016, 2016, 1-7, doi: 10.1155/2016/4950743.

Budianto and Suprastyani, H., Antagonist activity of Bacillus subtilis against Streptococcus iniae and Pseudomonas fluorescens, J. Vet., 2017, 18(3), 409–15, doi: 10.19087/jveteriner.2017.18.3.403.

Sun, J.L., Liang, X.H., Zeng, J., Li, G.L., and Zhao, R.X., Response surface methodology for the optimization of α-amylase production by Bacillus subtilis ZJF-1A5, Adv. Mater. Res., 2011, 236–238, 2323–6, doi: 10.4028/

Fitriani, A., Supriyanti, F.M.T., and Heryanto, T.E., Penentuan aktivitas amilase kasar termofil Bacillus subtilis isolat kawah Gunung Darajat Garut, Jawa Barat, Bionatura-Jurnal Ilmu-ilmu Hayati dan Fis., 2013, 15(2), 107–13.

Rehman, A. and Saeed, A., Isolation and screening of amylase producing Bacillus species from soil, Int. J. Adv. Res., 2015, 3(4), 151–64.

Yao, D., Su, L., Li, N., and Wu, J., Enhanced extracellular expression of Bacillus stearothermophilus α-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection, Microb. Cell Fact., 2019, 8(1), 1–12, doi: 10.1186/s12934-019-1119-8.

Ashwini, K., Kumar, G., Karthik, L., and Bhaskara, R.KV., Optimization, production and partial purification of extracellular α-amylase from Bacillus sp. marini, Arch. Appl. Sci. Res., 2011, 3(1), 33–42.

Divakaran, D., Chandran, A., and Pratap, C.R., Comparative study on production of α-amylase from Bacillus licheniformis strains, Brazilian J. Microbiol., 2011, 42(4), 1397–404, doi: 10.1590/S1517-83822011000400022.

Trismilah, T. and Wahyuntari, B., Pemanfaatan berbagai jenis pati sebagai sumber karbon untuk produksi a-amilase ekstraseluler Bacillus sp. SW2, J. Sains dan Teknol. Indones., 2013, 11(3), 169–74, doi: 10.29122/jsti.v11i3.841.

Shams, M.S.R., Kabir, F.N.-A., Sharmin, T., and Aziz, M.G., Evaluation of enzymatic hydrolysis via alcoholic fermentation of corn flour, Malaysian J. Halal Res., 2020, 2(2), 35–45, doi: 10.2478/mjhr-2019-0013.

Fromm, H. J. and Hargrove, M.S. Enzyme kinetics, In: Essentials of biochemistry, Springer Berlin Heidelberg, 2012.

Kustyawati, M.E., Sari, M., and Haryati, T., Effect of fermentation using Saccharomyces cerevisiae on the biochemical properties tapioca, Agritech, 2013, 33(3), 281–7.

Yang, Q., Ding, X., Liu, X., Liu, S., Sun, Y., Yu, Z., et al., Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa, Microb. Cell Fact., 2014, 13(1), 1–16, doi: 10.1186/1475-2859-13-27.

Behera, B.K. and Varma, A.. Microbial biomass process technologies and management, Microbial Biomass Process Technologies and Management, 2017, 1–306, doi: 10.1007/978-3-319-53913-3.

Lee, J.J.L., Chen, L., Shi, J., Trzcinski, A., and Chen, W.N., Metabolomic profiling of Rhodosporidium toruloides grown on glycerol for carotenoid production during different growth phases, J. Agric. Food Chem., 2014, 62(41), 10203–9, doi: 10.1021/jf502987q.

Thapa, S.S. and Grove, A.. Do global regulators hold the key to production of bacterial secondary metabolites? Antibiotics, 2019, 8(4), 160, doi: 10.3390/antibiotics8040160.

Mata-Gómez, L.C., Montañez, J.C., Méndez-Zavala, A., and Aguilar, C.N., Biotechnological production of carotenoids by yeasts: An overview, Microb. Cell Fact., 2014, 13(1), 12, doi: 10.1186/1475-2859-13-12.

How to Cite
Warjoto, R., Felianti, F., & Lay, B. (2020). Carotenoid Production by Rhodosporidium paludigenum Using Cassava Starch Hydrolyzed by Bacillus subtilis as Substrate. Indonesian Journal of Natural Pigments, 2(2), 36.
Full Paper